
Improved Algorithms for Maximal Clique Search in
Uncertain Networks

Rong-Hua Li†∗, Qiangqiang Dai§∗, Guoren Wang†, Zhong Ming§∗, Lu Qin‡, Jeffrey Xu Yu#

†Beijing Institute of Technology, Beijing, China; §Shenzhen University, Shenzhen, China;
∗National Engineering Laboratory for Big Data System Computing Technology;

‡University of Technology, Sydney, Australia; #The Chinese University of Hong Kong, Hong Kong, China;
lironghuascut@gmail.com; qiang56734@163.com; wanggrbit@126.com;

mingz@szu.edu.cn; Lu.Qin@uts.edu.au; yu@se.cuhk.edu.hk

Abstract—Enumerating maximal cliques from an uncertain
graph is a fundamental problem in uncertain graph analysis.
Given an uncertain graph G, a set of nodes C in G is a maximal
(k, τ)-clique if (1) |C| > k and C is a clique with probability
at least τ , and (2) C is a maximal node set meeting (1). The
state-of-the-art algorithm for enumerating all maximal (k, τ)-
cliques is very costly when handling large uncertain graphs, as
its time complexity is proportional to 2n where n is the number of
nodes in the uncertain graph. To overcome this issue, we propose
two new core-based pruning algorithms to reduce the uncertain
graph size without missing any maximal (k, τ)-clique. We also
develop a novel cut-based optimization technique to further
improve the pruning performance of the core-based pruning
algorithms. Based on these pruning techniques, we propose an
improved algorithm to enumerate all maximal (k, τ)-cliques, and
a new algorithm with several novel upper-bounding techniques
to compute one of maximum (k, τ)-cliques from the pruned
uncertain graph. The results of extensive experiments on six real-
world datasets demonstrate the efficiency and effectiveness of the
proposed algorithms.

I. INTRODUCTION

Real-world networks, such as social networks, biological
networks, and communication networks often consist of cohe-
sive subgraph structures. Mining cohesive subgraphs from a
network is a fundamental problem in network analysis which
has attracted much attention in the database and data mining
communities [1], [2], [3], [4], [5], [6]. Perhaps the most
elementary and widely-used cohesive subgraph model is the
maximal clique model which has also been extensively studied
in the literature [7], [8], [9]. Enumerating all maximal cliques
from a network has numerous applications, including finding
overlapping communities from social networks [10], detecting
social hierarchy [11], and identifying protein complexes in
protein-protein interaction (PPI) network [12].

Many real-world networks, however, are uncertain in nature
where each edge is associated with a probability, representing
the likelihood of the existence of the edge. The uncertain graph
has been widely used in many applications to model or express
the inferred relationship of the nodes in a network. Examples
of such networks consist of PPI networks with experimentally
inferred links [13], social networks with inferred influence
[14], and sensor networks with uncertain connectivity links
[15]. Many cohesive subgraph mining problems have recently
been studied in the context of uncertain graphs. Notable

examples include the core decomposition problem [16], the
truss decomposition problem [17], and the maximal clique
enumeration problem [18], [19].

In this paper, we focus on the problem of mining max-
imal cliques from an uncertain graph. In [18], Mukherjee
et al. proposed a maximal (k, τ)-clique model to represent
a maximal clique in an uncertain graph. Specifically, for an
uncertain graph G, a set of nodes C is called a maximal (k, τ)-
clique if (1) |C| > k and C is a clique with probability at
least τ , and (2) C is a maximal node set satisfying (1). As
shown in [18], the number of maximal (k, τ)-cliques in an
uncertain graph can be exponentially large, thus the problem
of enumerating all maximal (k, τ)-cliques is intractable. To
enumerate all maximal (k, τ)-cliques, Mukherjee et al. de-
veloped a backtracking enumeration algorithm based on a
classic set enumeration technique [20]. The main defect of
their algorithm is that its time complexity is proportional to
2n where n is the number of nodes in G, thus it is very
costly when handling large uncertain graphs. To speed up
their algorithm, we develop a new algorithm to enumerate
all maximal (k, τ)-cliques based on several non-trivial and
powerful pruning techniques. The appealing feature of our
algorithm is that its time complexity depends on 2n

′
where

n′ < n denotes the number of nodes in a small subgraph
of G, thus it can be used to handle large uncertain graphs.
We also present an algorithm to compute one of maximum
(k, τ)-cliques in G based on several novel upper bounds. More
specifically, we make the following contributions.

New DP algorithm. To efficiently enumerate all maximal
(k, τ)-cliques, we first apply an existing cohesive subgraph
model in uncertain graph called (k, τ)-core [16] to prune the
uncertain graph without missing any maximal (k, τ)-clique.
To compute the (k, τ)-core, we propose a new dynamic pro-
gramming (DP) algorithm which reduces the time complexity
of the state-of-the-art DP algorithm [16] from O(mdmax) to
O(mδ), where m, dmax and δ denote the number of edges,
the maximum degree and the degeneracy [9] of the uncertain
graph respectively. Note that δ is often much smaller than dmax

in most real-world graphs [9], thus our new DP algorithm is
faster than the state-of-the-art algorithm in practice.
Novel pruning techniques. Besides the (k, τ)-core pruning

rule, we also propose a new notion called (Topk, τ)-core

to prune the uncertain graph without missing any maximal
(k, τ)-clique. We show that the (Topk, τ)-core pruning is more
effective than the (k, τ)-core pruning rule. We develop an
efficient algorithm with O(m log2(dmax)) time complexity to
calculate the (Topk, τ)-core. In addition, we also propose a
novel cut-based optimization technique to further improve the
pruning performance of the core-based pruning rules.
New maximal clique algorithms. Equipped with the above

pruning techniques, we develop an improved algorithm to
enumerate all maximal (k, τ)-cliques. Unlike the existing al-
gorithm [18], the worst-case time complexity of our algorithm
is proportional to 2n

′
where n′ is no larger than the number of

nodes in the (Topk, τ)-core, which is typically much smaller
than the size of the original uncertain graph. We also propose a
new algorithm with several carefully-designed upper-bounding
techniques to compute one of maximum (k, τ)-cliques in an
uncertain graph.

Experimental evaluation. We conduct extensive experi-
ments to evaluate the proposed algorithms using six real-world
graphs. The results show that our new DP algorithm is up to
three orders of magnitude faster than the state-of-the-art DP
algorithm [16] for computing the (k, τ)-core on large uncertain
graphs. We show that the proposed maximal (k, τ)-clique enu-
meration algorithm significantly outperforms the state-of-the-
art algorithm [18] for enumerating all maximal (k, τ)-cliques.
For example, on the DBLP1 dataset (1,843,614 nodes and
8,350,259 edges), our algorithm takes less than 100 seconds
to enumerate all maximal (k, τ)-cliques with all parameter
settings, while the state-of-the-art algorithm consumes nearly
1,000 seconds. To compute one of maximum (k, τ)-cliques,
the proposed algorithm is two orders of magnitude faster than
the state-of-the-art algorithm [21] on large uncertain graphs.
In addition, we also conduct a case study on a real-world
PPI network to evaluate the effectiveness of our maximal
(k, τ)-clique enumeration algorithm. The results indicate that
our algorithm is much more effective than the state-of-the-art
algorithm to detect protein complexes in PPI networks.

Organization. Section II formulates the maximal (k, τ)-clique
search problems. The (k, τ)-core and (Topk, τ)-core pruning
algorithms, as well as the cut-based optimization technique
are proposed in Section III. Section IV presents the maximal
(k, τ)-clique enumeration algorithm. The maximum (k, τ)-
clique search algorithm is shown in Section V. The experimen-
tal results are reported in Section VI. We review the related
work in Section VII, and conclude this work in Section VIII.

II. PROBLEM DEFINITION

Let G = (V,E, p) be an uncertain graph, where V denotes
the set of nodes, E is the set of edges, and p : E → (0, 1]
is a function that assigns a probability of existence to each
edge e ∈ E. We denote by n = |V | and m = |E| the number
of nodes and edges respectively. For a node subset C ⊆ V ,

1In DBLP, we generate an probability for each edge based on an inde-
pendent exponential distribution, i.e., puv = 1− exp(−wuv/2) for an edge
(u, v), where wuv is the number of papers coauthored by u and v.

GC = (C,EC , p) is called an induced uncertain subgraph if
EC = {(u, v)|u 6= v, (u, v) ∈ E, u, v ∈ C}.

Denote by G̃ = (V,E) a deterministic graph of G which
is obtained by ignoring all probabilities associated with the
edges in G. Let Nu(G̃) be the set of neighbors of u in G̃, and
du(G̃) , |Nu(G̃)| be the degree of u in G̃. In the deterministic
graph G̃, the k-core is the maximum subgraph of G̃ in which
each node has degree no less than k [22]. The core number
of a node u in G̃, denoted by cu, is the largest k such that
there is a k-core containing u [22], [1]. The maximum core
number among all nodes in G̃, denoted by δ, is also referred
to as the degeneracy of G̃ [9].

Following the standard uncertain graph model [23], [24],
[25], [18], we assume that the existence of different edges
are mutually independent events. Based on this assumption,
the widely-used possible world semantics can be applied
to analyze uncertain graphs [23], [25], [26]. Specifically, a
possible world of the uncertain graph G is a deterministic
graph that contains all nodes in V and a set of edges sampling
from E based on the probability function p.

Let G = (V,EG) be a possible world of G, where EG ⊆ E.
The probability of observing a possible world G is defined as

Pr(G) ,
∏

e∈EG
pe

∏
e∈E\EG

(1− pe) (1)

For convenience, a notion G v G means that G is a possible
world of G. Following [19], we give a definition of maximal
clique in uncertain graphs as follows.

In a possible world graph G, a clique C in G = (V,EG)
is a complete subgraph, where each pair of nodes in C is
connected by an edge in EG. Based on the concept of clique,
we define the clique probability in an uncertain graph below.

Definition 1 (Clique probability [18]). In an uncertain graph
G, for a set of nodes C ⊆ V , the clique probability of C,
denoted by CPr(C,G), is defined as

CPr(C,G) =
∏

e∈EC
pe, (2)

where EC denotes the set of edges connecting nodes in C,
i.e., EC , {(u, v)|(u, v) ∈ E, u, v ∈ C, u 6= v}.

Based on Definition 1, the node set C ⊆ V is referred to
as a τ -clique if CPr(C,G) ≥ τ [18]. For a typical uncertain
graph, many τ -cliques are small and may be of no practical
use. Thus, it will be more useful to compute large τ -cliques
for practical applications. To this end, we introduce a concept
called (k, τ)-clique as follows, which requires the size of a
τ -clique strictly larger than a constant k.

Definition 2 ((k, τ)-clique). In an uncertain graph G, a set
of nodes C ⊆ V is called a (k, τ)-clique if it satisfies: (1)
|C| > k, and (2) CPr(C,G) ≥ τ .

Clearly, by Definition 2, the nodes in a (k, τ)-clique form
a clique in the deterministic graph G̃ if τ > 0. Based on
Definition 2, a maximal (k, τ)-clique is defined as follows.

Definition 3 (maximal (k, τ)-clique). In an uncertain graph
G, a set of nodes C is a maximal (k, τ)-clique if C is a (k, τ)-
clique and there is no (k, τ)-clique C ′ in G containing C.

4V

1V 2V

3V

5V 6V

7V V8
V9

0.95

0.95

0
.9

5

0
.9

5

0
.9

5

0.9
5

0
.9

5

0
.9

5

0.95

0.95

0
.9

5

0.9
5

0.9

0.9

0.9

0.8

V10

0.95

0
.9

5
0.7

5

0.7

Fig. 1. Running example

Example 1. Consider an uncertain graph G shown in Fig. 1.
Let k = 3 and τ = 0.72. Then, we can see that there are two
maximal (k, τ)-cliques in G which are C1 = {v1, · · · , v4} and
C2 = {v5, · · · , v8}. This is because the clique probabilities of
C1 and C2 are CPr(C1,G) = CPr(C2,G) = 0.735 which are
larger than τ . Moreover, there does not exist a node set C ′

containing C1 (or C2) that satisfies CPr(C ′,G) ≥ τ .

Let C be the set of all maximal (k, τ)-cliques in an uncertain
graph G. A maximal (k, τ)-clique in C with the largest size
is called a maximum (k, τ)-clique. Note that there may exist
several maximum (k, τ)-cliques with the same size in G. In
this paper, we aim at enumerating all maximal (k, τ)-cliques
and finding one of maximum (k, τ)-cliques in G. Specifically,
we formulate our problems below.

Problem statement. Given an uncertain graph G and two
parameters k and τ , our goal is to develop fast solutions to
solve the following two fundamental problems: (1) enumerate
all maximal (k, τ)-cliques in G; and (2) find one of maximum
(k, τ)-cliques in G.

As shown in [18], [19], the number of maximal (k, τ)-
cliques in an uncertain graph G is much larger than the
number of traditional maximal cliques in the corresponding
deterministic graph of G (i.e., G̃). As a result, the problem
of enumerating all maximal (k, τ)-cliques is much harder
than the problem of enumerating traditional maximal cliques.
In [18], [19], Mukherjee et. al. developed a backtracking
algorithm to enumerate all maximal (k, τ)-cliques based on
a classic set enumeration technique [20]. Their algorithm,
however, is very costly for large uncertain graphs, because its
worst-case time complexity is O(n2n). To speed up their algo-
rithm, we will develop several powerful pruning techniques to
substantially prune unpromising nodes in the uncertain graph,
thus significantly reducing the worst-case time complexity of
the backtracking enumeration algorithm. We will also propose
a maximum (k, τ)-clique search algorithm based on several
novel upper-bounding techniques.

III. CORE-BASED PRUNING ALGORITHMS

In this section, we develop two different core-based pruning
techniques to prune the nodes in an uncertain graph G that are
not contained in any maximal (k, τ)-clique. The first core-
based pruning algorithm is based on the (k, τ)-core which
was proposed in [16]. We show that any maximal (k, τ)-clique
must be contained in the (k, τ)-core. To efficiently implement
this pruning rule, we devise a new dynamic programming
(DP) based algorithm to compute the (k, τ)-core. Compared to
the algorithm proposed in [16], the new DP-based algorithm
reduces the time complexity for computing the (k, τ)-core

from O(mdmax) to O(mδ), where dmax is the maximum
degree of the nodes in the deterministic graph G̃ of G and
δ (δ ≤ dmax) is the degeneracy of G̃. The degeneracy δ is
typically much smaller than the maximum degree dmax in real-
world uncertain graphs, thus our algorithm is faster than the
algorithm proposed in [16]. The second pruning technique is
based on a newly-proposed concept, called (Topk, τ)-core. We
develop an efficient algorithm to calculate the (Topk, τ)-core.
We also propose a novel cut-based optimization technique
to further improve the above two core-based pruning rules.
Below, we detail these pruning techniques.

A. The (k, τ)-core pruning technique

Let G≥ru be the set of all possible worlds sampled from
G where u has degree no less than r, i.e., G≥ru , {G|G v
G, du(G) ≥ r}. Then, we define the probability Pr(du(G) ≥
r) ,

∑
G∈G≥ru Pr(G) [16]. Based on this probability, the τ -

degree of a node [16] is defined as follows.

Definition 4 (τ -degree [16]). Given an uncertain graph
G = (V,E, p) and a threshold τ ∈ (0, 1], the τ -degree of a
node u in V , denoted by τ -deg(u,G), is defined as the largest
integer r that meets Pr(du(G) ≥ r) ≥ τ , i.e., τ -deg(u,G) ,
max{r|Pr(du(G) ≥ r) ≥ τ, r ∈ [0, · · · , du(G̃)]}.

Based on Definition 4, the (k, τ)-core is defined below.

Definition 5 ((k, τ)-core [16]). Given an uncertain graph G =
(V,E, p) and two parameters k and τ , a set of nodes C ⊆ V
is called a (k, τ)-core if it meets: (1) τ -deg(u,GC) ≥ k for
each u ∈ C, and (2) there does not exist a node set C ′ ⊆ V
that satisfies both (1) and C ⊂ C ′.

By Definition 5, we can easily derive that there is only one
(k, τ)-core in G (the (k, τ)-core is not necessarily connected).
Below, we show that any maximal (k, τ)-clique must be
contained in the (k, τ)-core.

Lemma 1. Given an uncertain graph G = (V,E, p) and
two parameters k and τ , all maximal (k, τ)-cliques in G are
contained in the (k, τ)-core of G.

Proof. Let C be a maximal (k, τ)-clique, and ΩC be the set
of possible worlds where C is a clique (G ∈ ΩC if C is a
clique in G). By Definitions 1 and 3, we have CPr(C,G) =∑
G∈ΩC

Pr(G) ≥ τ . Since |C| > k, any node u ∈ C must
have degree no less than k in the possible world G ∈ ΩC .
Therefore, for each node u ∈ C, ΩC is a subset of G≥ku =
{G|G v G, du(G) ≥ k}. Based on this, we can derive that
Pr(du(GC) ≥ k) ≥

∑
G∈ΩC

Pr(G) ≥ τ . As a result, we have
τ -deg(u,GC) ≥ k for every u ∈ C. Since the (k, τ)-core Ĉ
of G is the maximum node set in which every node u satisfies
τ -deg(u,GĈ) ≥ k, C must be contained in Ĉ.

Example 2. Reconsider the uncertain graph G shown in
Fig. 1. Let k = 3 and τ = 0.72. Then, we can de-
rive that the τ -degrees for nodes {v1, v2, · · · , v10} are
{3, 4, 4, 5, 4, 3, 4, 3, 3, 3} respectively. Thus, all nodes in G

have τ -degrees no smaller than k, indicating that G is a (k, τ)-
core. We can see that in this example, the two maximal (k, τ)-
cliques are contained in the (k, τ)-core which confirms the
result shown in Lemma 1.

Based on Lemma 1, we can first compute the (k, τ)-core
of G, and then invoke the backtracking enumeration algorithm
proposed in [18] on the (k, τ)-core to find all maximal (k, τ)-
cliques. Since the size of the (k, τ)-core is often much smaller
than the size of the original uncertain graph G, our algorithm is
much more efficient than the algorithm proposed in [18] when
handling large uncertain graphs. The remaining question is
how can we efficiently compute the (k, τ)-core in an uncertain
graph G. Similar to the traditional k-core [22], the (k, τ)-core
can be obtained by iteratively peeling the nodes that have τ -
degrees smaller than k. The key step of this peeling algorithm
is to calculate (and update) the τ -degrees for all nodes in G.
In [16], Bonchi et. al. proposed a DP algorithm to compute
τ -deg(u) for each node u ∈ G. The detailed description of
this DP algorithm is shown as follows.

The DP algorithm. It is easy to see that Pr(du(G) ≥ k) =∑du(G̃)
i=k Pr(du(G) = i) = 1 −

∑k−1
i=0 Pr(du(G) = i). Thus, to

calculate τ -deg(u), the key step is to compute Pr(du(G) = i).
Once we have Pr(du(G) = i) for each i ∈ {0, · · · , du(G̃)}, we
can easily derive τ -deg(u) by the following procedure. First,
we have Pr(du(G) ≥ 0) = 1. Then, we can iteratively apply
the fact Pr(du(G) ≥ i+ 1) = Pr(du(G) ≥ i)−Pr(du(G) = i)
to compute Pr(du(G) ≥ i+ 1) from i = 0 to i = du(G̃)− 1.
Once Pr(du(G) ≥ i + 1) < τ , the iterative procedure
terminates and we can derive that τ -deg(u) = i.

To compute Pr(du(G) = i), Bonchi et. al. [16] devised
a DP algorithm based on the following observation. Let
Eu(G) = {e1, e2, · · · , edu(G̃)} be the set of edges incident
to u in G, and Ehu(G) = {e1, e2, · · · , eh} (h ≤ du(G̃))
be a subset of Eu(G) (the first h edges in Eu(G)). Let
Gh = (V,E \ (Eu(G) \ Ehu(G)), p) be the uncertain subgraph
of G obtained by removing all edges in Eu(G) \ Ehu(G), and
Xu(h, i) , Pr(du(Gh) = i). Then, for each h ∈ [1, du(G̃)]
and i ∈ [0, h], we have

Xu(h, i) = pehXu(h−1, i−1) + (1−peh)Xu(h−1, i). (3)

Initially, it is easy to derive that Xu(0, 0) = 1, Xu(h,−1) = 0
for all h ∈ [0, du(G̃)], and Xu(h, i) = 0 for all h ∈ [0, du(G̃)]
and i ∈ [h+ 1, du(G̃)]. Based on Eq. (3), Bonchi et. al. [16]
developed a DP algorithm to compute Pr(du(G) = i) (i.e.,
Xu(du(G̃), i)) for each i ∈ [0, du(G̃)]. As shown in [16], the
time complexity of the DP algorithm to calculate τ -deg(u) for
a node u is O(τ -deg(u)×du(G̃)). Since τ -deg(u) ≤ dmax, the
DP algorithm takes O(mdmax) time to compute the τ -degrees
for all nodes in G.

Recall that to compute the (k, τ)-core, the peeling algorithm
needs to update the τ -degrees of u’s neighbors when deleting
a node u [16]. Note that a node deletion is equivalent to a set
of edge deletions, thus we focus mainly on updating τ -deg(v)
when deleting an edge (u, v). Let G¬e = (V,E \{e}, p) be the

uncertain subgraph of G after deleting an edge e. If e ∈ Eu(G),
we have

Pr(du(G¬e) = i) =
Pr(du(G) = i)− pePr(du(G¬e) = i− 1)

1− pe
.

(4)
By setting i = 0 in Eq. (4), we have Pr(du(G¬e) = 0) =
Pr(du(G) = 0)/(1 − pe). Then, we can apply Eq. (4) to
iteratively compute the remaining Pr(du(G¬e) = i) values for
all i ∈ [1, · · · ,τ -deg(u)] in O(τ -deg(u)) time. Since each
edge is deleted at most once in computing the (k, τ)-core, the
total updating cost for a node u is bounded by O(du(G̃)×τ -
deg(u)). As a result, the total time complexity of the peeling
algorithm is O(mdmax) [16]. Since dmax is often very large in
real-life graphs, the DP algorithm is costly. Below, we propose
a more efficient algorithm to compute the (k, τ)-core.

New DP-based (k, τ)-core computation. Before proceeding
further, we define a notion, called τ -core number, for each
node u ∈ G as follows.

Definition 6 (τ -core number). Given an uncertain graph G
and parameter τ ∈ (0, 1], the τ -core number of a node u ∈ G,
denoted by ξu, is defined as the largest k such that there is a
(k, τ)-core containing u.

By Definition 6, we can easily derive that ξu ≤ cu for each
u ∈ G, where cu is the core number of u in the deterministic
graph G̃. Therefore, we can first prune all the nodes in G that
have core numbers in G̃ smaller than k, and then compute the
(k, τ)-core in the remaining uncertain graph. To efficiently
compute the (k, τ)-core in the remaining graph, we propose a
new concept called truncated τ -degree as follows.

Definition 7 (truncated τ -degree). Given an uncertain graph
G, the truncated τ -degree of a node u is defined as τ̄ -
deg(u,G) = min{cu,τ -deg(u,G)}, where cu is the core
number of u in the deterministic graph G̃ of G.

By Definition 7, we can see that the truncated τ -degree of
a node u is equal to the τ -degree of u truncated by its core
number. The following lemma shows that the (k, τ)-core can
also be computed based on the truncated τ -degree.

Lemma 2. Given an uncertain graph G = (V,E, p) and two
parameters k and τ , the (k, τ)-core is the maximum node set
C ⊆ V such that every node u ∈ C has τ̄ -deg(u,GC) ≥ k.

Proof. Let C ′ be the maximum node set such that τ -
deg(u,GC′) ≥ k for each u ∈ C ′. To prove the lemma,
we need to show C = C ′. First, we prove that C ⊆ C ′.
For any node u ∈ C, we have τ̄ -deg(u,GC) = min{cu,τ -
deg(u,GC)} ≥ k by definition, thus τ -deg(u,GC) ≥ k holds.
Since C ′ is the maximum set in which every node v satisfies
τ -deg(v,GC′) ≥ k, we have u ∈ C ′. Second, we show that
C ′ ⊆ C. For any node u ∈ C ′, we have τ -deg(u,G′C) ≥ k by
definition. Since C ′ is the (k, τ)-core, the τ -core number of u
(i.e., ξu) is no less than k. Based on this, we have cu ≥ ξu ≥ k,
and thus τ̄ -deg(u,GC′) ≥ k. Since C is the maximum set
where each node v meets τ̄ -deg(v,GC) ≥ k, u is also included
in C. This completes the proof.

Algorithm 1: NewDP(G = (V,E, p), u, cu, τ)
Input: Uncertain graph G, node u, core number cu, and parameter τ
Output: τ̄ -deg(u)

1 Set Yu(0, i)← 0 for each i ∈ [1, cu];
2 Set Yu(h, 0)← 1 for each h ∈ [0, du(G̃)];
3 Let Eu(G) , {e1, e2, · · · , edu(G̃)} be the set of edges incident to u;
4 for i = 1 to cu do
5 for h = 0 to du(G̃)− 1 do
6 Yu(h+ 1, i)← peh+1

Yu(h, i− 1) + (1− peh+1
)Yu(h, i);

7 if Yu(du(G̃), i) < τ then return i− 1;

8 return cu;

By Lemma 2, we can iteratively delete the nodes with
truncated τ -degree smaller than k to determine the (k, τ)-core.
The remaining question is how can we efficiently calculate
the truncated τ -degrees for all nodes. Clearly, to compute the
truncated τ -degrees, we can first compute the core numbers
using a classic core-decomposition algorithm [27], and then
calculate the τ -degrees using the DP algorithm proposed in
[16]. It is easy to see that the time complexity of this algorithm
is O(mdmax). To reduce the time complexity, we develop a
new DP algorithm to compute the truncated τ -degrees for all
nodes in O(mδ), where δ ≤ dmax is the degeneracy of G̃.

Unlike the DP algorithm to compute τ -deg(u) [16], our new
DP algorithm directly calculates Pr(du(G) ≥ i) to determine
τ̄ -deg(u). Let Yu(h, i) , Pr(du(Gh) ≥ i). Then, we have the
following recursive equation

Yu(h, i) = pehYu(h− 1, i− 1) + (1− peh)Yu(h− 1, i). (5)

The rationale of Eq. (5) is that the probability of du(Gh) ≥ k
can be derived by two different cases: (1) the edge eh ∈ Eu(G)
definitely appears in the uncertain graph G, and (2) eh does
not appear in G. In the first case, the probability is equal to
pehYu(h− 1, i− 1), while the probability of the second case
equals (1 − peh)Yu(h − 1, i). Therefore, Yu(h, i) is equal to
the sum of these two probabilities. It is important to note that
although Eq. (5) is very similar to Eq. (3), the semantics of
these two equations are totally different. The initial states of
Yu(h, i) in our DP algorithm are also quite different from
the initial states of the previous DP algorithm. Specifically,
we initially set Yu(0, i) = 0 for each i ∈ [1, cu]. This is
because when h = 0, no edge incident to u is considered,
thus the probability Pr(du(G0) ≥ i) = 0. Moreover, based on
Definition 7, we can set i ≤ cu. This is because if i > cu
and Pr(du(Gh) ≥ i) ≥ τ , we have τ̄ -deg(u) = cu and thus
we do not need to compute τ̄ -deg(u) in this case using the
DP algorithm. Additionally, we set Yu(h, 0) = 1 for each
h ∈ [0, du(G̃)]. The reason is that the inequality du(Gh) ≥ 0
always holds, thus Yu(h, 0) = Pr(du(Gh) ≥ 0) = 1 . Based
on these initial states, we can easily devise a DP algorithm to
compute all Yu(h, i). The pseudo code of our DP algorithm
to compute τ̄ -deg(u) is shown in Algorithm 1.

It is worth noting that in line 7 of Algorithm 1, the algorithm
can early terminate when τ -deg(u) < cu (in this case τ̄ -
deg(u) =τ -deg(u) < cu). The correctness of Algorithm 1
can be guaranteed by Definition 7 and Eq. (5). In addition,

Algorithm 2: NewDPCore(G = (V,E, p), k, τ)
Input: Uncertain graph G, parameters k and τ
Output: The (k, τ)-core

1 Let cu be the core number of node u in the deterministic graph G̃ of G;
2 Compute cu for each u ∈ V using a traditional core decomposition algorithm;
3 G′ = (V ′, E′, p)← prune all nodes in G with core numbers smaller than k;
4 Q← ∅;
5 for each u ∈ V ′ do
6 τ̄ -deg(u)← NewDP(G, u, cu, τ);
7 if τ̄ -deg(u) < k then Q.push(u);

8 while Q 6= ∅ do
9 u← Q.pop();

10 for each v ∈ Nu(G̃′) do
11 Delete (u, v) from G′;
12 τ̄ -deg(v)←Update(u, v, τ);
13 if τ̄ -deg(v) < k then Q.push(v) ;

14 V ′ ← V ′ \ {u};

15 return V ′;

16 Procedure Update(u, v, τ);
17 Let e = (u, v) be the deleted edge;
18 for i = 1 to τ̄ -deg(v) do
19 Yv(dv(G̃′)− 1, i)← Yv(dv(G̃′),i)−pe×Yv(dv(G̃′)−1,i−1)

(1−pe)
;

20 if Yv(dv(G̃′)− 1, i) < τ then return i− 1;

21 dv(G̃′)← dv(G̃′)− 1;
22 return τ̄ -deg(v) ;

we can easily derive that the time complexity of Algorithm 1
is O(du(G̃)×τ̄ -deg(u)). Since τ̄ -deg(u) ≤ δ for every node
u, the total time complexity of Algorithm 1 for computing the
truncated τ -degrees for all nodes is O(mδ).

To compute the (k, τ)-core, we also need to maintain the
truncated τ -degrees of u’s neighbors when peeling a node u.
The key step to update τ̄ -deg(v) is to update Yv(dv(G̃), i)
(i.e., Pr(du(G) ≥ i)). Note that after deleting an edge
e = (u, v), dv(G̃) decreases by 1. Thus, our goal is to update
Yv(dv(G̃) − 1, i) using the values of Yv(dv(G̃), i) for all
i ∈ [1,τ̄ -deg(v)]. Initially, we have Yv(dv(G̃) − 1, 0) = 1.
Then, we can iteratively use the following recursive equation
to compute Yv(dv(G̃)− 1, i) from i = 1 to i =τ̄ -deg(v):

Yv(dv(G̃)− 1, i) =
Yv(dv(G̃), i)− pe × Yv(dv(G̃)− 1, i− 1)

1− pe
.

(6)
Armed with Algorithm 1 and the above updating procedure,

we can easily devise the (k, τ)-core computation algorithm
which is shown in Algorithm 2. Specifically, Algorithm 2 first
prunes the nodes using the k-core of the deterministic graph G̃
(lines 1-3). Then, the algorithm uses a queue Q to maintain the
nodes that have truncated τ -degrees smaller than k (lines 5-
7). After that, the algorithm iteratively deletes the nodes in Q
until no node can be removed (lines 8-15). When deleting a
node u, the algorithm invokes an updating procedure (lines 16-
22) based on Eq. (6) to update the truncated τ -degrees of u’s
neighbor nodes (lines 10-13). The correctness of Algorithm 2
can be guaranteed by Lemma 2. Below, we analyze the time
and space complexity of Algorithm 2.

Theorem 1. The time and space complexity of Algorithm 2 is
O(mδ) and O(m+n) respectively, where δ is the degeneracy
of the deterministic graph G̃ of G.

Proof. First, in lines 1-2, the algorithm takes O(m+ n) time

to compute the core numbers of the nodes in G̃. Second, in
line 5-7, the algorithm consumes O(mδ) time to compute the
truncated τ -degrees for all nodes. Third, in lines 8-14, the
algorithm takes O(mδ) time to iteratively compute the (k, τ)-
core. This is because each edge is deleted at most once, the
time cost to update the truncated τ -degree of a node v is
O(dv(G̃)×τ̄ -deg(v)) by Eq. (6). Since τ̄ -deg(v) is bounded by
δ, the total time cost taken in lines 8-14 is O(mδ). Putting it all
together, the time complexity of Algorithm 2 is O(mδ). Note
that the space usage of Algorithm 1 to compute τ̄ -deg(u) is
O(du(G̃)), because the recursive equation can be implemented
by two du(G̃)-length arrays. For each u, the algorithm takes
O(τ̄ -deg(u)) space to maintain τ̄ -deg(u), which is bounded
by O(du(G̃)). Therefore, the total space usage of Algorithm 2
is O(m+ n).

Since the degeneracy δ is often much smaller than the
maximum degree dmax in real-life graphs, Algorithm 2 is
faster than the algorithm proposed in [16] for computing the
(k, τ)-core, which is confirmed in our experiments.

B. The (Topk, τ)-core pruning technique

In this subsection, we develop a simple but more effec-
tive pruning technique for maximal (k, τ)-clique enumeration
based on a novel concept, called (Topk, τ)-core. Again, we let
Eu(G) = {e1, e2, · · · , edu(G̃)} be the set of edges incident to
u in G. Suppose without loss of generality that the edges in
Eu(G) are sorted in non-increasing order based on the prob-
abilities, i.e., pe1 ≥ pe2 ≥ · · · ≥ pedu(G̃)

. Denote by Nk
u (G)

the set of top-k edges in Nu(G) with the highest probabilities,
i.e., Nk

u (G) , {e1, e2, · · · , ek} if du(G̃) ≥ k, and Nk
u (G) , ∅

otherwise. Based on Nk
u (G), we introduce a definition called

top-k product probability, denoted by πk(u,G), for each node
u ∈ G.

Definition 8 (top-k product probability). Given an uncertain
graph G and an integer k, the top-k product probability of a
node u ∈ G is defined as πk(u,G) ,

∏
e∈Nku(G) pe.

By Definition 8, we can easily show that the top-k product
probability for any node meets a monotonic property.

Lemma 3. For two uncertain graphs G1 and G2, we have
πk(u,G1) ≥πk(u,G2) for any u if G2 is a subgraph of G1.

Based on Definition 8, we define the (Topk, τ)-core below.

Definition 9 ((Topk, τ)-core). Given an uncertain graph G =
(V,E, p) and two parameters k and τ , a set of nodes C ⊆ V
is called a (Topk, τ)-core if it satisfies: (1) πk(u,GC) ≥ τ for
each u ∈ C, and (2) there does not exist a node set C ′ ⊆ V
that meets both (1) and C ⊂ C ′.

By Definition 9, we can easily obtain that there is only one
(Topk, τ)-core in G. Below, we show that all maximal (k, τ)-
cliques are contained in the (Topk, τ)-core.

Lemma 4. Given an uncertain graph G = (V,E, p) and
two parameters k and τ , all maximal (k, τ)-cliques in G are
contained in the (Topk, τ)-core of G.

Algorithm 3: TopKCore(G = (V,E, p), VI , k, τ)
Input: Uncertain graph G, a fixed node set VI , parameters k and τ
Output: The (Topk, τ)-core and a boolean constant

1 Q← ∅;
2 for each u ∈ V do
3 πk(u)← compute πk(u,G) based on Definition 8;
4 if πk(u) < τ then
5 if u ∈ VI then return (∅, 0);
6 Q.push(u);

7 while Q 6= ∅ do
8 u← Q.pop();
9 for each v ∈ Nu(G̃) do

10 Delete (u, v) from G;
11 dv(G̃)← dv(G̃)− 1;
12 Update πk(v) after deleting (u, v);
13 if πk(v) < τ then
14 if v ∈ VI then return (∅, 0);
15 Q.push(v);

16 V ← V \ {u};

17 return (V, 1);

Proof. Let C be a maximal (k, τ)-clique. By Eq. (2) and Defi-
nition 3, we have CPr(C,G) =

∏
e∈EC pe ≥ τ . Since |C| ≥ k,

we have πk(u,GC) =
∏
e∈Nku(GC) pe ≥

∏
e∈Nu(GC) pe for any

node u ∈ C. Note that all the edges in Nu(GC) are contained
in EC , thus

∏
e∈Nu(GC) pe ≥

∏
e∈EC pe ≥ τ . As a result, we

have πk(u,GC) ≥ τ for each u ∈ C. Since the (Topk, τ)-core
Ĉ of G is the maximum node set in which every node u meets
πk(u,G′C) ≥ τ , C must be contained in Ĉ.

Example 3. Reconsider the uncertain graph G in Fig. 1. Let
k = 3 and τ = 0.72. It is easy to check that the top-k
product probabilities for all nodes in C = {v1, v2, · · · , v9}
are no smaller than τ , while the top-k product probabilities
for the node v10 is 0.68 which is smaller than τ . Clearly, v10

is not contained in the (Topk, τ)-core by Definition 9. In this
example, we can easily derive that C is a (Topk, τ)-core. As
desired, the two maximal (k, τ)-cliques in G (see Example 1)
are contained in C which confirms the result shown in Lem-
ma 4. Compared to the (k, τ)-core, the (Topk, τ)-core pruning
technique can further prune the node v10 in this example,
indicating that the pruning performance of the (Topk, τ)-core
is better than that of the (k, τ)-core (see Corollary 1).

By Lemma 4, we are capable of using the (Topk, τ)-core
to prune the nodes in G that are not contained in any maximal
(k, τ)-clique. Since the top-k product probability for each node
satisfies a monotonic property (Lemma 3), we can devise an
iteratively peeling algorithm to calcualte the (Topk, τ)-core
based on the results shown in [28]. In particular, the (Topk, τ)-
core can be obtained by iteratively removing the nodes with
top-k product probabilities smaller than τ . The pseudo code
of this algorithm is shown in Algorithm 3.

Note that in Algorithm 3, the parameter VI denotes a set of
fixed node which will be used in our maximal (k, τ)-clique
enumeration algorithm. If the (Topk, τ)-core in G does not in-
clude VI , Algorithm 3 will return an empty set. Obviously, we
can set VI = ∅ and invoke TopKCore(G, ∅, k, τ) to compute
the (Topk, τ)-core in G. The correctness of Algorithm 3 can

be guaranteed by Lemma 3 and the generalized core theory
established in [28]. Below, we analyze the time and space
complexity of Algorithm 3.

Theorem 2. The time and space complexity of Algorithm 3 is
O(m log2(dmax)) and O(m+ n) respectively.

Proof. To compute πk(u,G), the algorithm needs to sort
the edges in Eu(G) which takes O(du(G̃) × log2(du(G̃)))
time. Thus, the total cost in lines 2-6 is O(

∑
u∈V (du(G̃) ×

log2(du(G̃)))) which is bounded by O(m log2(dmax)). Since
the edges in Ev(G) have been sorted for each v ∈ V , we
can easily update πk(v,G) after deleting an edge (u, v) in
constant time. Thus, the total cost in lines 7-16 is O(m+ n),
because each edge is removed at most once by the algorithm.
Putting it all together, the time complexity of Algorithm 3
is O(m log2(dmax)). For the space complexity, the algorithm
needs to maintain the uncertain graph, a queueQ, and πk(u,G)
for each u which consume O(m+ n) space in total.

As shown in Theorem 2, the (Topk, τ)-core can be com-
puted in near-linear time with respect to (w.r.t.) the size of
the uncertain graph. Note that the worst-case time complexity
of Algorithm 3 can be higher than that of Algorithm 2, as
log2(dmax) may be larger than the degeneracy δ in some real-
life graphs. Below, we show that the (Topk, τ)-core pruning
rule is more effective than the (k, τ)-core pruning rule.

Theorem 3. For each node u ∈ V , if πk(u,G) ≥ τ , we have
τ -deg(u,G) ≥ k.

Proof. Since πk(u,G) ≥ τ , we have
∏
e∈Nku(G) pe ≥ τ by

definition. Let Ωk be the set of all possible worlds drawn
from G where each possible world G ∈ Ωk contains all the
edges in Nk

u (G). Then, we have Pr(Ωk) ,
∑
G∈Ωk

Pr(G) =∏
e∈Nku(G) pe ≥ τ . Let G≥ku be the set of all possible worlds

drawn from G where u has a degree no less than k. Since
du(G) ≥ k for each G ∈ Ωk, Ωk is a subset of G≥ku . As a
result, Pr(du(G) ≥ k) ,

∑
G∈G≥ku Pr(G) ≥ Pr(Ωk) ≥ τ . By

Definition 4, we can obtain that τ -deg(u,G) ≥ k.

The following corollary can be easily obtained by Theorem 3.

Corollary 1. The (Topk, τ)-core of an uncertain graph G is
contained in the (k, τ)-core of G.

Corollary 1 indicates that the (Topk, τ)-core is more ef-
fective than the (k, τ)-core for pruning in enumerating all
maximal (k, τ)-cliques. Below, we develop a novel cut-based
optimization technique to further improve the pruning perfor-
mance of two core-based pruning rules.

C. Cut-based optimization

Let C be the (Topk, τ)-core (or the (k, τ)-core), and GC
be the uncertain subgraph induced by C. Assume without
loss of generality that GC is connected. Note that if GC is
disconnected, we can enumerate all maximal (k, τ)-cliques
in each connected component of GC respectively. Below, we
develop a technique to improve the pruning performance of
the core-based pruning rules.

Let H be a maximal (k, τ)-clique and GH = (VH , EH , p)
be the uncertain subgraph induced by H . For convenience, we
refer to GH as a maximal (k, τ)-clique subgraph in the rest
of this paper. A cut χ = (S, T) is a partition of VC of an
uncertain graph GC = (VC , EC , p) into two disjoint subsets
S and T . The cut set Eχ , {(u, v) ∈ EC |u ∈ S, v ∈ V } =
{e1, e2, · · · , e|Eχ|} of GC denotes a set of edges that have one
endpoint in each subset of the partition. Clearly, if no maximal
(k, τ)-clique subgraph contains the edges in Eχ, all edges in
Eχ can be deleted. Since the deletions of the edges in Eχ will
partition GC into several small connected uncertain subgraphs,
the computational costs for finding all maximal (k, τ)-cliques
can be significantly reduced.

Suppose without loss of generality that the edges in the
cut set Eχ are sorted in a non-increasing order based on the
probabilities, i.e, pe1 ≥ pe2 ≥ · · · ≥ pe|Eχ| . Let Ekχ = {pe1 ≥
pe2 ≥ · · · ≥ pek} be the set of top-k edges in Eχ with the
highest probabilities if |Eχ| ≥ k, and Ekχ = ∅ otherwise. The
top-k product probability of a cut set Eχ, denoted by πk(Eχ),
is defined as

πk(Eχ) ,

∏

e∈Ekχ
pe, if |Eχ| ≥ k,

0, otherwise.
(7)

Based on Eq. (7), we define a notion called low-probability
cut set as follows.

Definition 10. For a given parameter τ , a cut set Eχ is called
a low-probability cut set if πk(Eχ) < τ .

Note that by Eq. (7) and Definition 10, any cut set Eχ with
|Eχ| smaller than k is a low-probability cut set. Below, we
show that any maximal (k, τ)-clique subgraph cannot consist
of any edge in a low-probability cut set.

Lemma 5. For any low-probability cut set Eχ, there is no
maximal (k, τ)-clique subgraph containing any edge in Eχ.

Proof. Suppose without loss of generality that Eχ divides
the connected uncertain graph GC = (VC , EC , p) into two
connected components G1 = (V1, E1, p) and G2 = (V2, E2, p)
such that VC = V1 ∪ V2 and V1 ∩ V2 = ∅. First, we show that
if |Eχ| < k, the lemma holds. Let H be a maximal (k, τ)-
clique, and GH = (VH , EH , p) be the uncertain subgraph
induced by H . Assume that GH contains some edges in a
cut set Eχ with |Eχ| < k. Then, H can be divided into two
disjoint sets, denoted by H1 and H2, by the cut set Eχ. Since
H is a maximal (k, τ)-clique, H must form a clique in the
deterministic graph G̃ and |H| ≥ k. As a result, the number
of edges between H1 and H2 is no smaller than k. Note that
the edges between H1 and H2 must be included in Eχ, thus
we have |Eχ| ≥ k, which is a contradiction.

Second, we prove the lemma when |Eχ| ≥ k. Since Eχ is
a low-probability cut set, we have

∏
e∈Ekχ

pe < τ . Suppose
that there is a maximal (k, τ)-clique subgraph GH containing
some edges in Eχ. Then, the cut set Eχ can partition H into
two disjoint parts H1 and H2. Let E1,2 , {(u, v) ∈ EH |u ∈
H1, v ∈ H2} be the set of edges that have one endpoint in each

part. Then, by definition, we have E1,2 ⊆ Eχ. Therefore, we
can easily derive that

∏
e∈Ek1,2

pe ≤
∏
e∈Ekχ

pe < τ . Since H is
a maximal (k, τ)-clique, we have

∏
e∈Ek1,2

pe ≥
∏
e∈EH pe ≥

τ , which is a contradiction.

Example 4. Reconsider the uncertain graph G in Fig. 1.
Again, we let k = 3 and τ = 0.72. In this example, there
are two low-probability cut sets in the (Topk, τ)-core C
({v1, v2, · · · , v9}) which are Eχ1

= {(v9, v2), (v9, v4)} and
Eχ2 = {(v9, v5), (v9, v7)}. Clearly, no maximal (k, τ)-clique
contains an edge in Eχ1 or Eχ2 which confirms Lemma 5.
Compared to the (Topk, τ)-core pruning, we can see that the
cut-based optimization technique can further prune the node
v9 in this example.

By Lemma 5, if we find a low-probability cut set Eχ in the
uncertain subgraph GC , then we can safely drop all the edges
in Eχ without missing any maximal (k, τ)-clique. Clearly,
this will divide GC into several small connected subgraphs,
thus reducing the cost for enumerating all maximal (k, τ)-
cliques. However, finding all low-probability cut sets in GC
is very costly. In this paper, we make use of a simple min-
cut algorithm [29] to find a part of low-probability cut sets.
Specifically, the algorithm first selects an arbitrary node in GC ,
and then iteratively picks a node that is most tightly connected
to the current set of selected nodes S and adds it into S. At
this point, the algorithm verifies whether the cut set between
S and C \ S is a low-probability cut set or not. If so, the
algorithm drops all edges in the cut set, and then performs the
same iterative procedure in the node set C \S. Otherwise, the
algorithm continues to choose the next node until all nodes
have been selected.

The worst-case time complexity of the cut-based optimiza-
tion technique is O(|VC ||EC | × log2(|EC |)). This is because
in each iteration, the algorithm needs to sort the edges in the
cut set Eχ to determine whether Eχ is a low-probability cut
set, which consumes O(|EC | × log2(|EC |) time. In addition,
the algorithm takes at most O(|EC |) time to select a node
in each iteration. Since there are O(|VC |) iterations, the
time complexity of the cut-based optimization technique is
O(|VC ||EC |× log2(|EC |)). Note that the size (|VC |+ |EC |) of
the (Topk, τ)-core (or (k, τ)-core) is often very small, thus the
cut-based optimization approach is very efficient in practice.

Remark. We note that the cut-based optimization technique
can be considered as a generalized (Topk, τ)-core pruning
technique. This is because the set of all edges incident to a
node u is a special cut set which partitions the node set V
into two disjoint sets u and V \ {u}. It is easy to see that
the (Topk, τ)-core pruning technique recursively deletes such
a special cut set with top-k product probabilities smaller than
τ . In the cut-based optimization technique, we generalize this
special cut to a general low-probability cut set based on the
result established in Lemma 5.

IV. ENUMERATING ALL MAXIMAL UNCERTAIN CLIQUES

We present a new maximal (k, τ)-clique enumeration algo-
rithm, called MUCE, by integrating our core-based pruning
techniques into the backtracking enumeration algorithm pro-
posed in [18]. The MUCE algorithm first invokes Algorithm 3
(or Algorithm 2) to prune unpromising nodes in the uncertain
graph G, and then performs a cut-based optimization on the
(Topk, τ)-core (or (k, τ)-core) to further reduce the graph size.
Subsequently, the algorithm enumerates all maximal (k, τ)-
cliques on the reduced uncertain graph using a backtracking
enumeration algorithm. Note that unlike the backtracking
enumeration algorithm proposed in [18], we also integrates
the (Topk, τ)-core pruning technique into the backtracking
enumeration algorithm to prune unpromising search branches.
The details of our algorithm is shown in Algorithm 4.

In Algorithm 4, the core-based pruning techniques are
shown in lines 1-6. After performing the cut-based optimiza-
tion, we are able to obtain a set of connected parts of the
reduced uncertain graph (lines 3-4). Then, in each connected
part, the algorithm calls the backtracking enumeration algorith-
m MUC to find all maximal (k, τ)-cliques (lines 7-22). MUC
admits five parameters (R,C,X, k, τ). R denotes a τ -clique
which may be expanded to a maximal (k, τ)-clique. C is the
set of candidate nodes that is used to expand the current τ -
clique R. X denotes a set of nodes that can expand the current
τ -clique R, but have already been explored in a different
search path by the algorithm. The MUC algorithm first checks
whether the current τ -clique R is a maximal (k, τ)-clique or
not (line 8). If so, the algorithm outputs R and terminates the
current search path (lines 8-10). Then, the algorithm invokes
Algorithm 3 to compute the (Topk, τ)-core in the set R ∪ C
(lines 12-13). If there is a (Topk, τ)-core S′ containing R with
|S′| ≥ k, then the algorithm updates the candidate set C by
S′ \R (line 15). This is because any maximal (k, τ)-clique in
R ∪C must be contained in S′, thus the algorithm can prune
the candidate set using the (Topk, τ)-core S′. Otherwise, the
algorithm terminates the current search path (line 14), because
there is no maximal (k, τ)-clique contained in R ∪ C.

After pruning the candidate set C, the algorithm iteratively
selects a node in C to expand the current τ -clique R. To avoid
repeatedly enumerating the same maximal (k, τ)-clique, the
nodes in C are selected following a lexicographical ordering
(line 16). When adding a node u into the current τ -clique R,
the algorithm generates the candidate set C ′ for the expanded
τ -clique R′ = R ∪ {u} using a technique proposed in [18]
(lines 17-18). Obviously, if |R′| + |C ′| < k, the algorithm
completes the current search path, and continues to process the
next nodes (line 19). Also, the algorithm applies the technique
proposed in [18] to determine the set X for the expanded τ -
clique R′ (line 20). Subsequently, the algorithm recursively
calls the same procedure to expand the τ -clique R′ (line 21).
After processing a node u, the algorithm adds it into X ,
because u has already been processed in the current search
path which cannot be explored in the following recursions.
Below, we analyze the time complexity of our algorithm.

Algorithm 4: MUCE(G = (V,E, p), k, τ)
Input: Uncertain graph G, parameters k and τ
Output: All maximal (k, τ)-cliques

1 /* C ← NewDPCore(G, k, τ) */;
2 C ←TopKCore(G, ∅, k, τ);
3 C′ ← perform the cut-based optimization technique on C;
4 Let H be the set of connected components obtained by C′;
5 for each H ∈ H do
6 MUC(∅, H, ∅, k, τ);

7 Procedure MUC(R, C, X , k, τ);
8 if C ∪X = ∅ and |R| ≥ k then
9 Output R as a maximal (k, τ)-clique;

10 return;

11 /* Lines 12-14: prune the candidate set by the (Topk, τ)-core */;
12 S ← R ∪ C;
13 if |R| < k then (S′, b)←TopKCore(GS , R, k, τ);
14 if b = 0 or |S′| < k then return;
15 C ← S′ \ R;
16 for each u ∈ C considered in lexicographical ordering do
17 R′ ← R ∪ {u};
18 C′ ← generate the candidate set for R′ using the algorithm in [19];
19 if |R′|+ |C′| < k then continue;
20 X′ ← generate the set X for R′ using the algorithm in [19];
21 MUC(R′, C′, X′, k, τ);
22 X ← X ∪ {u};

Theorem 4. The time complexity of Algorithm 4 is
O(2n

′
(m′+n′)), where n′ is the size of the largest connected

component of the (Topk, τ)-core.

Proof. Since the search space of Algorithm 4 can be repre-
sented as a classic set enumeration tree [20], [18], the number
of vertices in the enumeration tree is O(2n

′
). In each vertex of

the set enumeration tree, the most time-consuming step is to
perform the (Topk, τ)-core pruning which takes O(m′ + n′)
time. This is because the neighbors of a node u in G have
been sorted when computing the (Topk, τ)-core of G, thus
the algorithm can compute the (Topk, τ)-core in linear time
(w.r.t. R ∪ C) in each recursion. Since there are at most
O(2n

′
) vertices, the total time complexity of Algorithm 4 is

O(2n
′
(m′ + n′)).

Note that since n′ and m′ are often much smaller than the
size of the original uncertain graph, Algorithm 4 is faster than
the algorithm proposed in [18], [19], which is confirmed in
our experiments. In addition, it is easy to show that the space
complexity of Algorithm 4 is O(m+ n) which is linear w.r.t.
the uncertain graph size.

V. MAXIMUM UNCERTAIN CLIQUE SEARCH

Algorithm 4 can be slightly modified to compute one
of maximum (k, τ)-cliques. Specifically, when obtaining a
maximal (k, τ)-clique (line 9), we maintain the size of the
largest maximal (k, τ)-clique C∗ found so far, denoted by σ
(|C∗| = σ). Note that in Algorithm 4, each search subspace
can be represented by a pair of node sets (R,C), where R
denotes a τ -clique and C is the set of candidate nodes for R.
If the size of the candidate set C is smaller than σ − |R| (or
|R ∪ C| < σ), the algorithm can early terminate, because all
maximal (k, τ)-cliques in the current search subspace are no
larger than σ. Clearly, the key step of this maximum (k, τ)-
clique search algorithm is to develop a tight upper bound

for the size of maximal (k, τ)-cliques contained in a search
subspace (R,C). However, the upper bound based on the
candidate set size |C| is not very tight, because |R∪C| is often
larger than σ. To speed up the algorithm, we first propose a
basic upper bound based on a classic coloring technique [30].
Such a color-based upper bound is shown to be tighter than
the candidate set size based upper bound. Then, we develop
two nontrivial and more effective color-based upper bounds to
further improve the pruning performance.

A basic color-based upper bound. A basic bound can be
easily derived by a classic coloring algorithm. In particular,
we assign a color to each node in G̃ using a degree-ordering
based greedy coloring algorithm [30] so that no two adjacent
nodes have the same color. Since each τ -clique R is a clique
in G̃, the colors of the nodes in R must be different. Therefore,
the number of colors of the nodes in R ∪ C is an upper
bound of the size of a maximum (k, τ)-clique contained in
R ∪ C. Let col(C) be the number of colors of the candidate
nodes in C. Then, |R| + col(C) is an upper bound of a
maximum (k, τ)-clique contained in R ∪ C. For an efficient
implement, we only invoke the greedy coloring algorithm
once, and compute the upper bound |R| + col(C) in each
search subspace (R,C) based on the same coloring result.
Note that the greedy coloring algorithm can be implemented
in linear time w.r.t. the uncertain graph size [30] and compute
the upper bound |R|+ col(C) in each search subspace (R,C)
can be done in O(|C|) time, thus such a basic color-based
pruning technique is very efficient.

Advanced color-based upper bound I: The basic color-based
upper bound only considers the clique size constraint which
ignores the clique probability constraint. Here we develop a
tighter color-based upper bound based on both the clique size
and clique probability constraints. Again, we assign a color
to each node in G̃ using a greedy coloring algorithm [30].
Then, for a search subspace (R,C), we let r be the number
of colors of the candidate nodes in C, i.e., r = col(C).
Clearly, the nodes in C can be classified into r color groups
{C1, C2, · · · , Cr} where the nodes in a group have the same
color. For each candidate node v ∈ C, we define πv(R)
as πv(R) ,

∏
u∈R puv . Let v∗i be the node in Ci that

has the largest πv(R) value, i.e., v∗i = arg max
v∈Ci
{πv(R)}.

Then, we sort the nodes {v∗1 , v∗2 , · · · , v∗r} in a non-increasing
order based on the πv∗i (R) value. Assume without loss of
generality that πv∗1 (R) ≥ πv∗2 (R) ≥ · · · ≥ πv∗r (R). Let
fi ,

∏i
j=1 πv∗j (R). Then, we define r̄ as

r̄ , arg max
i∈{1,··· ,r}

{fi × CPr(R,G) ≥ τ}. (8)

By Eq. (8), we have the following result.

Lemma 6. For any search subspace (R,C), |R| + r̄ is an
upper bound of the size of a maximum (k, τ)-clique contained
in (R,C).

Proof. The lemma can be proved by a contradiction. Suppose
that there is a (k, τ)-clique H in (R, I) with |H| > |R| + r̄.

Since H contains R, we have |H \ R| > r̄. Note that H is
a (k, τ)-clique, thus we have

∏
v∈H\R πv(R)× CPr(R,G) ≥

CPr(H,G) ≥ τ . Since H is a clique, the nodes in H \ R
have different colors. Based on this, we can derive that∏
v∈H\R πv(R) ≤

∏|H\R|
j=1 πv∗j (R) = f|H\R|. As a result, we

have f|H\R| × CPr(R,G) ≥ τ . Note that by Eq. (8), we have
r̄ ≥ |H \R| which is a contradiction.

Clearly, the upper bound |R| + r̄ is tighter than the basic
color-based upper bound |R| + col(C), as r̄ ≤ col(C) by
Eq. (8). Below, we analyze the time complexity for computing
r̄ in each search subspace (R,C). First, for all nodes in C,
the total cost for computing πv(R) (v ∈ C) is bounded by
O(

∑
v∈C dv(G̃)). Second, it takes O(|r| log2 |r|) time to sort

the nodes in C. Thus, the time overhead for calculating r̄ is
O(|r| log2 |r| +

∑
v∈C dv(G̃)). Since both r and |C| are not

very large, this advanced color-based upper bound can also be
efficiently computed.

Advanced color-based upper bound II: Here we develop
a different type of color-based upper bound which is also
tighter than the basic color-based upper bound. Again, we
let {C1, C2, · · · , Cr} be the r color groups of the nodes in
C. For each u ∈ R, we define π∗i (u) , max

v∈Ci,e=(u,v)
{pe} for

i ∈ {1, 2, · · · , r}. Then, we sort {π∗1(u), π∗2(u), · · · , π∗r (u)}
in a non-increasing order. Assume without loss of generality
that π∗1(u) ≥ π∗2(u) ≥ · · · ≥ π∗r (u). Let gui ,

∏i
j=1 π

∗
j (u).

Then, we define ru as

ru , arg max
i∈{1,··· ,r}

{gui × CPr(R,G) ≥ τ}. (9)

Based on Eq. (9), we define s̄ , min
u∈R
{ru}. Then, we have the

following result.

Lemma 7. For any search subspace (R,C), |R| + s̄ is an
upper bound of the size of a maximum (k, τ)-clique contained
in (R,C).

Proof. We prove this lemma by a contradiction. Suppose to
the contrary that there is a (k, τ)-clique H contained in the
search subspace (R,C) with |H| > |R| + s̄. Then, we have
|H \ R| > s̄. Since H is a clique in G̃, the nodes in H \
R have different colors. Consider a node u ∈ R and v ∈
H \ R. Assume without loss of generality that v ∈ Ci. Let
pi(u) be the probability of the edge (u, v) where v ∈ Ci.
Clearly, by definition, we have pi(u) ≤ π∗i (u). Thus, we have∏|H\R|
j=1 pj(u) ≤

∏|H\R|
j=1 π∗j (u) = gu|H\R|. Since H is a (k, τ)-

clique, we have
∏|H\R|
j=1 pj(u)×CPr(R,G) ≥ CPr(H,G) ≥ τ .

Therefore, by Eq. (9), we can obtain that ru ≥ |H \ R|. The
above argument holds for any u ∈ R, thus we have s̄ ,
min
u∈R
{ru} ≥ |H \R|, which is a contradiction.

The upper bound |R|+s̄ is tighter than the basic color-based
upper bound, because s̄ ≤ col(C) by Eq. (9). We analyze
the time complexity for computing s̄ in each search subspace
(R,C) as follows. First, the time cost for calculating π∗i (u) for
all u ∈ R is bounded by O(

∑
u∈R du(G̃)). Second, the time

TABLE I
DATASETS

Dataset n = |V | m = |E| dmax δ

AskUbuntu 157,522 455,691 5,401 48
SuperUser 192,409 714,570 14,294 61
CaHepTh 22,908 2,444,798 8,718 561
WikiTalk 1,094,018 2,787,967 141,951 124
DBLP 1,843,614 8,350,259 2,213 279

overhead for sorting π∗i (u) is O(r log2 r). Thus, the total time
complexity for computing s̄ is O(r log2 r +

∑
u∈R du(G̃)).

Since both r and |R| are not very large, the upper bound
|R|+ s̄ can be efficiently derived.

Implementation details. Note that we can easily integrate
the above upper bounds into Algorithm 4 to find a maximum
(k, τ)-clique. Specifically, we first maintain the size of the
largest maximal (k, τ)-clique σ found so far in line 9. Then,
in line 12 of Algorithm 4, we first compute the basic color-
based upper bound, i.e., |R| + col(C). If |R| + col(C) ≤ σ,
the algorithm can safely prune the current search subspace.
Otherwise, the algorithm computes the above two advanced
color-based upper bounds to determine whether the current
search subspace can be pruned or not. In our experiments,
we will show that the algorithm equipped with all the above
color-based upper bounds is two orders of magnitude faster
than the state-of-the-art algorithm [21].

VI. EXPERIMENTS

In this section, we conduct extensive experiments to evaluate
the efficiency and effectiveness of the proposed algorithms.
Below, we first describe the experimental setup and then report
our results.
A. Experimental setup

We implement two algorithms DPCore and DPCore+ to
compute the (k, τ)-core. DPCore is the state-of-the-art DP
algorithm proposed in [16], and DPCore+ is our DP algorithm
(Algorithm 2). To enumerate all maximal (k, τ)-cliques, we
implement three algorithms: MUCE, MUCE+, and MUCE++.
MUCE is the state-of-the-art algorithm proposed in [18], [19].
Essentially, MUCE is Algorithm 4 that does not use any core-
based pruning rule developed in this paper, but it is integrated
all pruning rules proposed in [19]. MUCE+ is Algorithm 4
with the (k, τ)-core pruning rule. MUCE++ is Algorithm 4
with the (Topk, τ)-core pruning rule. Note that both MUCE+
and MUCE++ are integrated with the cut-based optimization
technique (see line 3 in Algorithm 4). We also implement
three algorithms for finding one of maximum (k, τ)-cliques:
MaxUC, MaxRDS, and MaxUC+. MaxUC is a variant of
Algorithm 4 that only uses the candidate set size based upper
bound for pruning. MaxRDS is the state-of-the-art maximum
(k, τ)-clique search algorithm proposed in [21], and MaxUC+
is our algorithm that is integrated with three color-based upper
bounds proposed in Section V. All algorithms are implemented
in C++. We conduct all experiments on a PC with a 2.4GHz
Xeon CPU and 16GB memory running Red Hat Linux 6.4.
Datasets. We make use of five real-world graphs to evaluate
the efficiency of various algorithms. Table I provides the
statistics, where the last two columns denote the maximum

 1
 2
 3
 4
 5
 6
 7
 8
 9

 6 8 10 12 14

T
im

e
(s

ec
)

k

MUCE
MUCE+

MUCE++

(a) AskUbuntu (vary k)

 10
 20
 30
 40
 50
 60
 70
 80
 90

 6 8 10 12 14

T
im

e
(s

ec
)

k

MUCE
MUCE+

MUCE++

(b) SuperUser (vary k)

 0
 2
 4
 6
 8

 10
 12
 14

 6 8 10 12 14

T
im

e
(s

ec
)

k

MUCE
MUCE+

MUCE++

(c) CaHepTh (vary k)

 60

 100

 140

 180

 220

 260

 6 8 10 12 14

T
im

e
(s

ec
)

k

MUCE
MUCE+

MUCE++

(d) WikiTalk (vary k)

10

100

1K

 6 8 10 12 14

T
im

e
(s

ec
)

k

MUCE
MUCE+

MUCE++

(e) DBLP (vary k)

 5

 10

 15

 20

 25

 0.01 0.03 0.05 0.07 0.09

T
im

e
(s

ec
)

τ

MUCE
MUCE+

MUCE++

(f) AskUbuntu (vary τ)

 100
 200
 300
 400
 500
 600

 0.01 0.03 0.05 0.07 0.09

T
im

e
(s

ec
)

τ

MUCE
MUCE+

MUCE++

(g) SuperUser (vary τ)

1

10

100

1K

 0.01 0.03 0.05 0.07 0.09

T
im

e
(s

ec
)

τ

MUCE
MUCE+

MUCE++

(h) CaHepTh (vary τ)

 200
 400
 600
 800

 1000
 1200
 1400

 0.01 0.03 0.05 0.07 0.09

T
im

e
(s

ec
)

τ

MUCE
MUCE+

MUCE++

(i) WikiTalk (vary τ)

10

100

1K

10K

 0.01 0.03 0.05 0.07 0.09

T
im

e
(s

ec
)

τ

MUCE
MUCE+

MUCE++

(j) DBLP (vary τ)
Fig. 3. Runtime of different algorithms for enumerating all maximal (k, τ)-cliques.

 0
 50

 100
 150
 200
 250
 300

 6 8 10 12 14

Ti
m

e
(s

ec
)

k

DPCore
DPCore+

(a) WikiTalk (vary k)

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 6 8 10 12 14

Ti
m

e
(s

ec
)

k

DPCore
DPCore+

(b) DBLP (vary k)

 0
 50

 100
 150
 200
 250
 300

 0.01 0.03 0.05 0.07 0.09

Ti
m

e
(s

ec
)

τ

DPCore
DPCore+

(c) WikiTalk (vary τ)

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0.01 0.03 0.05 0.07 0.09

Ti
m

e
(s

ec
)

τ

DPCore
DPCore+

(d) DBLP (vary τ)
Fig. 2. Runtime of DPCore and DPCore+.

degree and degeneracy of the graph respectively. AskUbuntu,
SuperUser, and WikiTalk are weighted online communication
networks where the weight on an edge denotes the num-
ber of interactions between two users. Both CaHepTh and
DBLP are weighted scientific collaboration networks where
the weight on an edge denotes the number of papers co-
authored by two researchers. AskUbuntu, SuperUser, and
WikiTalk are downloaded from the Stanford network dataset
collection (snap.stanford.edu), CaHepTh is downloaded from
(konect.uni-koblenz.de/), and DBLP is extracted from (dblp.u
ni-trier.de/xml). We adopt a standard method in the uncertain
graph mining literature [23], [24] to generate an uncertain
graphs for each dataset. In particular, for each edge (u, v),
we make use of an exponential cumulative distribution with
mean λ = 2 to the weight of (u, v) to generate a probability
(i.e., puv = 1− exp(−wuv/λ) [23], [24]).
Parameters. There are two parameters in our algorithms: k
and τ . The parameter k is chosen from the interval [6, 14]
with a default value of k = 10; τ is selected from the interval
[0.01, 0.1] with a default value of τ = 0.1. Unless otherwise
specified, the value of the other parameter is set to its default
value when varying a parameter.

B. Efficiency results

Exp-1: Runtime of DPCore and DPCore+. Fig. 2 shows
the runtime of DPCore and DPCore+ on WikiTalk and DBLP
datasets with varying parameters. Similar results can also be
observed on the other datasets. We can see that the runtime

100

1K

10K

 100K

1M

 6 8 10 12 14

N
od

es

k

DPCore+
TopKCore

(a) number of remaining nodes (vary k)

10K

 32K

 100K

 320K

 0.01 0.03 0.05 0.07 0.09

N
od

es

τ

DPCore+
TopKCore

(b) number of remaining nodes (vary τ)

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

 6 8 10 12 14

Ti
m

e
(s

ec
)

k

DPCore+
TopKCore

(c) runtime (vary k)

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.01 0.03 0.05 0.07 0.09

Ti
m

e
(s

ec
)

τ

DPCore+
TopKCore

(d) runtime (vary τ)
Fig. 4. Comparison between different core-based pruning rules (DBLP).

of both DPCore and DPCore+ are robust with varying k
and τ . As desired, DPCore+ is much faster than DPCore on
both WikiTalk and DBLP. Moreover, DPCore+ is three orders
of magnitude faster than DPCore on WikiTalk. For instance,
when k = 10 and τ = 0.1, DPCore+ only takes 0.28 seconds
while DPCore consumes 314 seconds on WikiTalk. This is
because on the WikiTalk dataset, the maximum degree is much
larger than the degeneracy (see Table I), thus our DPCore+
algorithm is much faster than DPCore. This result confirms
our theoretical analysis in Section III-A.

Exp-2: Runtime of MUCE, MUCE+, and MUCE++. In this
experiment, we evaluate the runtime of MUCE, MUCE+, and
MUCE++ for enumerating all maximal (k, τ)-cliques. Fig. 3
reports the runtime of these algorithms on all datasets with
varying values for k and τ . As can be seen, MUCE+ is
consistently faster than MUCE, and MUCE++ is significantly
faster than MUCE+ under all parameter settings. Moreover,
we can see that on large datasets, both MUCE++ and MUCE+
are at least one order of magnitude faster than MUCE. For
example, in Fig. 3(e), when k = 10 and τ = 0.1, MUCE++,
MUCE+, and MUCE takes 44.7 seconds, 53.4 seconds, and
576.2 seconds to enumerate all maximal (k, τ)-cliques on
DBLP, respectively. These results confirm that our pruning
techniques developed in Section III are indeed very powerful
in enumerating all maximal (k, τ)-cliques on large uncertain
graphs. In general, the runtime of all the three algorithms
decrease as k (or τ) increases. This is because when k (or

0.1

1

10

100

 6 8 10 12 14

T
im

e
(s

ec
)

k

MaxUC
MaxRDS
MaxUC+

(a) AskUbuntu (vary k)

0.1

1

10

100

1K

 6 8 10 12 14

T
im

e
(s

ec
)

k

MaxUC
MaxRDS
MaxUC+

(b) SuperUser (vary k)

0.1

1

10

 6 8 10 12 14

T
im

e
(s

ec
)

k

MaxUC
MaxRDS
MaxUC+

(c) CaHepTh (vary k)

10

100

1K

 6 8 10 12 14

T
im

e
(s

ec
)

k

MaxUC
MaxRDS
MaxUC+

(d) WikiTalk (vary k)

1

10

100

1K

 6 8 10 12 14

T
im

e
(s

ec
)

k

MaxUC
MaxRDS
MaxUC+

(e) DBLP (vary k)

0.1

1

10

100

 0.01 0.03 0.05 0.07 0.09

T
im

e
(s

ec
)

τ

MaxUC
MaxRDS
MaxUC+

(f) AskUbuntu (vary τ)

0.1

1

10

100

1K

10K

 0.01 0.03 0.05 0.07 0.09

T
im

e
(s

ec
)

τ

MaxUC
MaxRDS
MaxUC+

(g) SuperUser (vary τ)

0.1

1

10

100

1K

 0.01 0.03 0.05 0.07 0.09

T
im

e
(s

ec
)

τ

MaxUC
MaxRDS
MaxUC+

(h) CaHepTh (vary τ)

10

100

1K

 0.01 0.03 0.05 0.07 0.09

T
im

e
(s

ec
)

τ

MaxUC
MaxRDS
MaxUC+

(i) WikiTalk (vary τ)

1

10

100

1K

10K

 0.01 0.03 0.05 0.07 0.09

T
im

e
(s

ec
)

τ

MaxUC
MaxRDS
MaxUC+

(j) DBLP (vary τ)
Fig. 5. Runtime of different algorithms for finding a maximum (k, τ)-clique.

0

0.1

1

10

100

1K

20% 40% 60% 80% 100%

Ti
m

e
(s

ec
)

DPCore
DPCore+

(a) vary |V |

0

0.1

1

10

100

1K

20% 40% 60% 80% 100%

Ti
m

e
(s

ec
)

DPCore
DPCore+

(b) vary |E|

0.01

0.1

1

10

100

1K

20% 40% 60% 80% 100%

Ti
m

e
(s

ec
)

MUCE
MUCE+

MUCE++

(c) vary |V |

0.01

0.1

1

10

100

1K

20% 40% 60% 80% 100%

Ti
m

e
(s

ec
)

MUCE
MUCE+

MUCE++

(d) vary |E|

0.01

0.1

1

10

100

20% 40% 60% 80% 100%

Ti
m

e
(s

ec
)

MaxUC
MaxRDS
MaxUC+

(e) vary |V |

0.01

0.1

1

10

100

1K

20% 40% 60% 80% 100%

Ti
m

e
(s

ec
)

MaxUC
MaxRDS
MaxUC+

(f) vary |E|

Fig. 6. Scalability of various algorithms (WikiTalk).

τ) increases, the number of maximal (k, τ)-cliques decreases
and the algorithm can prune search subspaces early in the enu-
meration, thus the time overhead of the algorithm decreases.

Exp-3: Comparison of the core-based pruning rules. In this
experiment, we evaluate the pruning performance of the (k, τ)-
core and (Topk, τ)-core pruning techniques. Fig. 4 shows the
results on DBLP using the default parameter setting. The
results on the other datasets are consistent. From Figs. 4(a-b),
we can see that the number of remaining nodes obtained by
the (Topk, τ)-core pruning is much smaller than that obtained
by the (k, τ)-core pruning rule. For example, when k = 14
and τ = 0.1, the number of remaining nodes on DBLP is only
802 after performing the (Topk, τ)-core pruning, while using
the (k, τ)-core pruning rule, the number of remaining nodes is
39,823. These results indicate that the (Topk, τ)-core pruning
is more effective than the (k, τ)-core pruning in enumerating
all maximal (k, τ)-cliques, which also confirms our theoretical
analysis in Section III. In addition, from Figs. 4(c-d), we can
observe that the time overhead for computing the (k, τ)-core

and (Topk, τ)-core are comparable with all parameter settings.
This is because both (k, τ)-core and (Topk, τ)-core can be
computed in near linear time using the proposed algorithms.

Exp-4: Runtime of MaxUC, MaxRDS, and MaxUC+. Here
we evaluate the performance of various algorithms for finding
one of maximum (k, τ)-cliques. Fig. 5 shows the results
on all datasets with varying values for parameters k and
τ . As can be seen, MaxUC+ significantly outperforms other
competitors. For example, when k = 10 and τ = 0.1, MaxUC+
only takes 1.3 seconds to find a maximum (k, τ)-clique on
DBLP, while MaxRDS consumes 225.8 seconds and MaxUC
uses 553.7 seconds. In this case, our MaxUC+ algorithm is
two orders of magnitude faster than MaxRDS and MaxUC.
These results indicate that our color-based upper-bounding
techniques are very effective to prune the search paths in
finding a maximum (k, τ)-clique. Moreover, we can see that
MaxUC+ takes less than 10 seconds on all datasets under most
parameter settings. These results further demonstrate the high
efficiency of our MaxUC+ algorithm. Generally, the runtime
of all three algorithms decrease with increasing k or τ . The
reason is because with a larger value of k (or τ), the algorithm
can prune search subspaces aggressively early in the search
procedure.

Exp-5: Scalability testings. We use the WikiTalk dataset to
test the scalability of all the proposed algorithms. Specifically,
we generate four subgraphs by randomly sampling 20-80%
of the nodes (edges) from WikiTalk and evaluate the time
costs of our algorithms on these subgraphs. Figs. 6(a-b) show
the scalability results of DPCore and DPCore+ under the
default parameter setting. As can be seen, the runtime of
our DPCore+ algorithm increases smoothly with a varying
|V | or |E|, while the runtime of DPCore increases sharply.
These results demonstrate the high scalability of our DPCore+
algorithm. Figs. 6(c-d) depict the scalability results of MUCE,
MUCE+, and MUCE++. We can see that the runtime of all
three algorithms increase not very sharply with increasing |V |
or |E|. Moreover, our algorithms (MUCE+ and MUCE++)
consistently outperform MUCE. These results indicate that our
algorithms are scalable when handling large uncertain graphs.
Similarly, in Figs. 6(e-f), the results suggest that our MaxUC+

 0

 100

 200

 300

 400

 500

AskUbuntu

SuperUser

CaHepTh

WikiTalk

DBLP

M
em

or
y

(M
B

)

Graph size
MUCE

MUCE+
MUCE++

(a) maximal clique enumeration

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

AskUbuntu

SuperUser

CaHepTh

WikiTalk

DBLP

M
em

or
y

(M
B

)

Graph size
MaxUC

MaxRDS
MaxUC+

(b) maximum clique search
Fig. 7. Memory overhead of various algorithms.

algorithm exhibits very good scalability in computing one of
maximum (k, τ)-cliques.

Exp-6: Memory overhead. Fig. 7(a) reports the memory over-
head of three maximal (k, τ)-clique enumeration algorithms
(MUCE, MUCE+, and MUCE++) for all datasets. The results
demonstrate that the memory usages of all three algorithms
are slightly higher than the graph size but clearly lower
than twice the size of the graph. These results confirm the
linear space complexity of Algorithm 4. Fig. 7(b) shows the
memory consumption of three maximum (k, τ)-clique search
algorithms (MaxUC, MaxRDS, and MaxUC+). As can be seen,
all three algorithms take linear space cost w.r.t. the uncertain
graph size. This is because all three algorithms follow a depth-
first search manner, thus the space overhead is linear.

Exp-7: Effect of different probability distributions. Here
we study the performance of our algorithms with different
probability distributions. Recall that in all previous exper-
iments, the probability on each edge is generated by an
exponential distribution with a parameter λ. In this experiment,
we first investigate the impact of parameter λ for various
algorithms (varying λ from 2 to 6). Second, we make use of
a uniform [0, 1] distribution to generate edge probabilities for
each dataset, and then evaluate the performance of different
algorithms on these datasets. Fig. 8 shows the results of
different algorithms on DBLP using default parameter values
(k = 10, τ = 0.1, λ = 2). Similar results can also be
observed on other datasets or using other parameter values. For
convenience, we refer to DBLP with uniform distribution as
DBLP-U, and DBLP with exponential distribution as DBLP-E.

In Fig. 8(a), we can see that the number of remaining
nodes obtained by both TopKCore and DPCore+ decreases
with an increasing λ. This is because the probability of
an edge decreases as λ increases, thus the size of both
(k, τ)-core and (Topk, τ)-core reduces when λ increases. As
shown in Fig. 8(b), the pruning performance of TopKCore
is slightly better on DBLP-E. For DPCore+, however, the
pruning performance is better on DBLP-U. The reason could
be that for a high-degree node u, the average edge prob-
abilities (for all u’s outgoing edges) generated by uniform
distributions are typically smaller than those obtained by
exponential distributions, but the top-k probabilities obtained
by uniform distributions may be larger than those computed
by exponential distributions. Additionally, Figs. 8(a-b) also
show that TopKCore significantly outperforms DPCore+ for
pruning, which is consistent with our previous results.

From Fig. 8(c), we can observe that the runtime of MUCE++
(or MUCE+) decreases with an increasing λ, due to the edge

100

1K

10K

100K

1M

 2 3 4 5 6

N
od

es

λ

DPCore+
TopKCore

(a) number of remaining nodes

10K

50K

100K

TopKCore
(τ=0.1)

DPCore+
(τ=0.1)

TopKCore
(τ=0.05)

DPCore+
(τ=0.05)

N
od

es

Exponential
Uniform

(b) number of remaining nodes

1

10

100

1K

 2 3 4 5 6

Ti
m

e
(s

ec
)

λ

MUCE
MUCE+

MUCE++

(c) maximal clique enumeration

10

100

1K

MUCE
MUCE+

MUCE++

Ti
m

e
(s

ec
)

Exponential
Uniform

(d) maximal clique enumeration

1

10

100

1K

 2 3 4 5 6

Ti
m

e
(s

ec
)

λ

MaxUC
MaxRDS
MaxUC+

(e) maximum clique search

1

10

100

1K

MaxUC
MaxRDS

MaxUC+

Ti
m

e
(s

ec
)

Exponential
Uniform

(f) maximum clique search

Fig. 8. Effect of different probability distributions (DBLP).

probabilities reducing. As shown in Fig. 8(d), the runtime of
MUCE++ (or MUCE+) on DBLP-U is significantly lower than
that on DBLP-E. This is because the number of maximal
(k, τ)-cliques on DBLP-U is smaller than that on DBLP-E.
Interestingly, from Figs. 8(e-f), we can see that the maximum
clique search algorithms are robust with respect to different
probability distributions in most cases. As an exception shown
in Fig. 8(f), MaxUC+ performs significantly better on DBLP-
E than that on DBLP-U. This is because the clique size on
DBLP-U is typically smaller than that on DBLP-E, reduc-
ing the effectiveness of the color-based pruning techniques.
In addition, we can clearly see that MaxUC+ significantly
outperforms two baselines. These results further confirm the
high efficiency of our MaxUC+ algorithm.

C. Effectiveness results

Here we conduct a case study on a protein-protein in-
teraction (PPI) network to evaluate the effectiveness of the
proposed algorithms. For this experiment, we use a real-world
PPI network CORE which is an uncertain graph provided by
Krogan et al. [31]. In particular, CORE contains 2,708 nodes
and 7,123 edges, where a node is a protein and an edge denotes
an interaction between two proteins. Each edge in CORE is
associated with a probability, denoting the confidence of the
interaction between two proteins. In addition, we can obtain
the ground-truth protein complexes for CORE based on the
MIPS protein database [32], [33], where a protein complex is a
cohesive subgraph of CORE. Below, we show the effectiveness
of our algorithm to detect protein complexes in CORE.

Note that based on the ground truth, we are able to calculate
the number of true positives (TP), the number of false positives
(FP), and the precision (PR=TP/(TP+FP)) obtained by various
protein complex detection algorithms. More specifically, TP
denotes the number of correctly matched interactions in pre-
dicted complexes with that in MIPS, and FP is the total number

TABLE II
PRECISION OF VARIOUS ALGORITHMS

Algorithm #Results TP FP PR
USCAN 456 1086 2037 0.348
PCluster 475 1027 3021 0.266
MUCE++ 694 7020 940 0.882

 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 5 7 9 11 13

PR

k

MUCE++
USCAN
PCluster

(a) vary k

 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.01 0.03 0.05 0.07 0.09

PR

ε

MUCE++
USCAN
PCluster

(b) vary τ
Fig. 9. Precision of different algorithms with varying parameters (CORE).

of interactions in predicted complexes minus TP. We adopt
the same method to compute TP, FP, and PR as used in [32],
[33]. We compare the proposed algorithm (MUCE++) with two
state-of-the-art protein complex detection algorithms USCAN
[33] and PCluster [32] based on the TP, FP, and PR metrics.
For both USCAN and PCluster, we adopt the default parameter
values as used in their original experiments [33], [32]. Table II
shows the results of different algorithms. Note that the parame-
ters of MUCE++ are also set to default values (i.e., k = 10 and
τ = 0.1). As can be seen, MUCE++ substantially outperforms
the two baseline algorithms in terms of TP, FP, and PR.
For example, the precision of MUCE++ is 0.882, while the
precision of USCAN and PCluster is only 0.348 and 0.266
respectively. The reason is that each protein complex may be
corresponding to a small cohesive subgraph, which can be
well characterized by a maximal (k, τ)-clique. However, both
USCAN and PCluster are clustering-based algorithms which
may generate large-size clusters, thus decreasing precision. In
Fig. 9, we also study the effect of parameters k and τ in our
algorithm. The results show that the precision of MUCE++ is
robust with respect to both k and τ . These results indicate that
our algorithm is very effective to detect protein complexes in
PPI networks.

VII. RELATED WORK

Uncertain graph mining. Mining uncertain graphs has at-
tracted much attention in the database and data mining
communities [34], [35], [16], [36], [14], [37], [38], [33].
Jin et al. [34] studied a problem of mining highly reliable
connected subgraphs in an uncertain graphs. Liu et al. [35]
proposed a clustering algorithm to identify reliable clusters
in an uncertain graph. Bonchi et al. [16] investigated the k-
core decomposition problem on uncertain graphs. Parchas et
al. [36] proposed a framework to analyze uncertain graphs
based on representative instances. Mehmood et al. [14] studied
an influence cascade problem where the influence network is
modeled as an uncertain graph. Huang et al. [37] proposed
a k-truss search problem on uncertain graphs. Gao et al. [38]
proposed an approach to find RkNN on uncertain graphs. More
recently, Qiu et al. [33] studied the graph structural clustering
problem on uncertain graphs. For the maximal clique mining
problem, Zou et al. [39] proposed an algorithm to find the
top-k maximal cliques in an uncertain graph. Mukherjee et al.
[18], [19] simplified the maximal clique model proposed in

[39], and proposed a backtracking enumeration algorithm to
find all maximal cliques. However, the enumeration algorithm
proposed in [18], [19] is very costly for large uncertain graphs.
In this work, we focus mainly on developing fast solutions to
enumerate maximal cliques in a large uncertain graph. We also
propose an algorithm to find one of maximum cliques in an
uncertain graph based on several novel pruning techniques.

Maximal clique mining. Maximal clique mining is a fun-
damental graph mining task which has been widely used in
many real-world applications [40], [7], [41], [8], [9]. The
practical algorithms for enumerating all maximal cliques are
the classic Bron-Kerbosch algorithm [40] and its variants [7],
[9]. Tomita et al. [7] proved that the Bron-Kerbosch algo-
rithm with a greedy pivoting technique can achieve optimal
time complexity for listing all maximal cliques. Eppstein et
al. [9] further improved the Bron-Kerbosch algorithm based
on a degeneracy ordering heuristics. Recently, Cheng et al.
proposed an I/O-efficient maximal clique enumeration algo-
rithm for disk-resident graphs [41] and a parallel maximal
clique enumeration algorithm using limited memory [8]. The
maximal clique enumeration problem has also been studied for
special graph data. For instance, Viard et al. [42] investigated a
problem of enumerating maximal cliques in temporal graphs,
in which each edge is associated with a timestamp. Li et al.
[43] studied a problem of enumerating maximal signed cliques
in a signed graph, where the edges in the graph can be positive
or negative.

Another related problem is to find a maximum clique in a
graph where the goal is to identify a clique with the largest
size. Most practical algorithms for this problem are based on
the branch and bound search technique [44], [45], [46], [5],
[47]. Ostergard [44] proposed a branch and bound algorithm
with a Russian Doll Search framework to compute a maximum
clique. Li [45] proposed a branch and bound algorithm based
on a so-called MaxSAT bound which is shown to be better than
the classic coloring based bound. Rossi et al. [46] proposed
a parallel algorithm to find a maximum clique using the
degeneracy and coloring based bounds. Lu et al. [5] presented
a randomized algorithm to find near maximum clique in a
large sparse graph. Tomita [47] proposed several efficient
branch and bound algorithms to compute a maximum clique
based on the coloring order heuristics. All these techniques are
tailored to deterministic graphs and cannot be directly used for
uncertain graphs. More recently, Miao et al. [21] proposed an
algorithm for finding a maximum clique in an uncertain graph
based on the classic Russian Doll Search framework. Their
algorithm, however, is not very efficient for large uncertain
graphs, as its time complexity is proportional to 2n where n
is the number of nodes in the uncertain graph. In this work, we
develop a faster algorithm to compute a maximum clique in an
uncertain graph based on several powerful pruning techniques.

VIII. CONCLUSION

In this paper, we develop several new solutions for maxi-
mal (k, τ)-clique search in uncertain graphs. Specifically, we
first propose an efficient (k, τ)-core based pruning approach

to prune the nodes in an uncertain graph which are not
contained in any maximal (k, τ)-clique. We also develop a
novel (Topk, τ)-core based pruning strategy, as well as a cut-
based optimization technique to further improve the pruning
performance. On the pruned uncertain graph, we propose
a new algorithm to enumerate all maximal (k, τ)-cliques,
and a new algorithm to compute one of maximum (k, τ)-
cliques based on several carefully-designed upper-bounding
techniques. Comprehensive experiments on six real-world
datasets demonstrate the efficiency and effectiveness of our
algorithms.

REFERENCES

[1] R.-H. Li, J. X. Yu, and R. Mao, “Efficient core maintenance in large
dynamic graphs,” IEEE Trans. Knowl. Data Eng., vol. 26, no. 10, pp.
2453–2465, 2014.

[2] X. Huang, H. Cheng, L. Qin, W. Tian, and J. X. Yu, “Querying k-truss
community in large and dynamic graphs,” SIGMOD, 2014.

[3] L. Qin, R. Li, L. Chang, and C. Zhang, “Locally densest subgraph
discovery,” in KDD, 2015.

[4] R.-H. Li, L. Qin, J. X. Yu, and R. Mao, “Influential community search
in large networks,” PVLDB, vol. 8, no. 5, pp. 509–520, 2015.

[5] C. Lu, J. X. Yu, H. Wei, and Y. Zhang, “Finding the maximum clique
in massive graphs,” PVLDB, vol. 10, no. 11, pp. 1538–1549, 2017.

[6] R. Li, L. Qin, F. Ye, J. X. Yu, X. Xiao, N. Xiao, and Z. Zheng, “Skyline
community search in multi-valued networks,” in SIGMOD, 2018.

[7] E. Tomita, A. Tanaka, and H. Takahashi, “The worst-case time complex-
ity for generating all maximal cliques and computational experiments,”
Theor. Comput. Sci., vol. 363, no. 1, pp. 28–42, 2006.

[8] J. Cheng, L. Zhu, Y. Ke, and S. Chu, “Fast algorithms for maximal
clique enumeration with limited memory,” in KDD, 2012.

[9] D. Eppstein, M. Löffler, and D. Strash, “Listing all maximal cliques in
large sparse real-world graphs,” ACM Journal of Experimental Algorith-
mics, vol. 18, 2013.

[10] G. Palla, I. Derenyi, I. Farkas, and T. Vicsek, “Uncovering the overlap-
ping community structure of complex networks in nature and society,”
Nature, vol. 435, pp. 814–818, 2005.

[11] G. Creamer, R. Rowe, S. Hershkop, and S. J. Stolfo, “Segmentation and
automated social hierarchy detection through email network analysis,”
in 1st International Workshop on Social Networks Analysis, SNA-KDD,
2007.

[12] B. Zhang, B.-H. Park, T. Karpinets, and N. F. Samatova, “From pull-
down data to protein interaction networks and complexes with biological
relevance,” Bioinformatics, vol. 24, no. 7, pp. 976–986, 2008.

[13] J. S. Bader, A. Chaudhuri, J. M. Rothberg, and J. Chant, “Gaining
confidence in high-throughput protein interaction networks,” Nature
Biotechnology, vol. 22, no. 1, pp. 78–85, 2004.

[14] Y. Mehmood, F. Bonchi, and D. Garcı́a-Soriano, “Spheres of influence
for more effective viral marketing,” in SIGMOD, 2016.

[15] H. Kawahigashi, Y. Terashima, N. Miyauchi, and T. Nakakawaji, “Mod-
eling ad hoc sensor networks using random graph theory,” in CCNC,
2005.

[16] F. Bonchi, F. Gullo, A. Kaltenbrunner, and Y. Volkovich, “Core decom-
position of uncertain graphs,” in KDD, 2014.

[17] X. Huang, W. Lu, and L. V. S. Lakshmanan, “Truss decomposition of
probabilistic graphs: Semantics and algorithms,” in SIGMOD, 2016.

[18] A. P. Mukherjee, P. Xu, and S. Tirthapura, “Mining maximal cliques
from an uncertain graph,” in ICDE, 2015.

[19] ——, “Enumeration of maximal cliques from an uncertain graph,” IEEE
Trans. Knowl. Data Eng., vol. 29, no. 3, pp. 543–555, 2017.

[20] R. Rymon, “Search through systematic set enumeration,” in Proceed-
ings of the 3rd International Conference on Principles of Knowledge
Representation and Reasoning, 1992.

[21] Z. Miao, B. Balasundaram, and E. L. Pasiliao, “An exact algorithm for
the maximum probabilistic clique problem,” J. Comb. Optim., vol. 28,
no. 1, pp. 105–120, 2014.

[22] S. B. Seidman, “Network structure and minimum degree,” Social Net-
works, vol. 5, no. 3, pp. 269–287, 1983.

[23] M. Potamias, F. Bonchi, A. Gionis, and G. Kollios, “k-nearest neighbors
in uncertain graphs,” PVLDB, vol. 3, no. 1, pp. 997–1008, 2010.

[24] R. Jin, L. Liu, B. Ding, and H. Wang, “Distance-constraint reachability
computation in uncertain graphs,” PVLDB, vol. 4, no. 9, pp. 551–562,
2011.

[25] R. Li, J. X. Yu, R. Mao, and T. Jin, “Efficient and accurate query
evaluation on uncertain graphs via recursive stratified sampling,” in
ICDE, 2014.

[26] ——, “Recursive stratified sampling: A new framework for query
evaluation on uncertain graphs,” IEEE Trans. Knowl. Data Eng., vol. 28,
no. 2, pp. 468–482, 2016.

[27] V. Batagelj and M. Zaversnik, “An O(m) algorithm for cores decompo-
sition of networks,” CoRR, vol. cs.DS/0310049, 2003.

[28] ——, “Fast algorithms for determining (generalized) core groups in
social networks,” Adv. Data Analysis and Classification, vol. 5, no. 2,
pp. 129–145, 2011.

[29] M. Stoer and F. Wagner, “A simple min-cut algorithm,” Journal of the
ACM, vol. 44, no. 4, pp. 585–591, 1997.

[30] W. Hasenplaugh, T. Kaler, T. B. Schardl, and C. E. Leiserson, “Ordering
heuristics for parallel graph coloring,” in SPAA, 2014.

[31] N. J. Krogan, G. Cagney, H. Yu, G. Zhong, X. Guo, A. Ignatchenko,
J. Li, S. Pu, N. Datta, A. P. Tikuisis, and others, “Global landscape of
protein complexes in the yeast saccharomyces cerevisiae,” Nature, vol.
440, no. 7084, pp. 637–643, 2006.

[32] G. Kollios, M. Potamias, and E. Terzi, “Clustering large probabilistic
graphs,” IEEE Transactions on Knowledge and Data Engineering,
vol. 25, no. 2, pp. 325–336, 2013.

[33] Y.-X. Qiu, R.-H. Li, J. Li, S. Qiao, G. Wang, J. X. Yu, and
R. Mao, “Efficient structural clustering on probabilistic graphs,” IEEE
Transactions on Knowledge and Data Engineering, to appear. [Online].
Available: https://doi.org/10.1109/TKDE.2018.2872553

[34] R. Jin, L. Liu, and C. C. Aggarwal, “Discovering highly reliable
subgraphs in uncertain graphs,” in KDD, 2011.

[35] L. Liu, R. Jin, C. C. Aggarwal, and Y. Shen, “Reliable clustering on
uncertain graphs,” in ICDM, 2012.

[36] P. Parchas, F. Gullo, D. Papadias, and F. Bonchi, “Uncertain graph
processing through representative instances,” ACM Trans. Database
Syst., vol. 40, no. 3, pp. 20:1–20:39, 2015.

[37] X. Huang, W. Lu, and L. V. S. Lakshmanan, “Truss decomposition of
probabilistic graphs: Semantics and algorithms,” in SIGMOD, 2016.

[38] Y. Gao, X. Miao, G. Chen, B. Zheng, D. Cai, and H. Cui, “On efficiently
finding reverse k-nearest neighbors over uncertain graphs,” The VLDB
Journal, pp. 1–26, 2017.

[39] Z. Zou, J. Li, H. Gao, and S. Zhang, “Finding top-k maximal cliques
in an uncertain graph,” in ICDE, 2010.

[40] C. Bron and J. Kerbosch, “Finding all cliques of an undirected graph
(algorithm 457),” Commun. ACM, vol. 16, no. 9, pp. 575–576, 1973.

[41] J. Cheng, Y. Ke, A. W.-C. Fu, J. X. Yu, and L. Zhu, “Finding maximal
cliques in massive networks,” ACM Trans. Database Syst., vol. 36, no. 4,
pp. 21:1–21:34, 2011.

[42] J. Viard, M. Latapy, and C. Magnien, “Computing maximal cliques in
link streams,” Theor. Comput. Sci., vol. 609, pp. 245–252, 2016.

[43] R.-H. Li, Q. Dai, L. Qin, G. Wang, X. Xiao, J. X. Yu, and S. Qiao,
“Efficient signed clique search in signed networks,” in ICDE, 2018.

[44] P. R. J. Östergård, “A fast algorithm for the maximum clique problem,”
Discrete Applied Mathematics, vol. 120, no. 1-3, pp. 197–207, 2002.

[45] C. M. Li and Z. Quan, “An efficient branch-and-bound algorithm based
on maxsat for the maximum clique problem,” in AAAI, 2010.

[46] R. A. Rossi, D. F. Gleich, and A. H. Gebremedhin, “Parallel maximum
clique algorithms with applications to network analysis,” SIAM J.
Scientific Computing, vol. 37, no. 5, 2015.

[47] E. Tomita, “Efficient algorithms for finding maximum and maximal
cliques and their applications,” in WALCOM, 2017, pp. 3–15.

